Summary: Intelligente Systemen
- This + 400k other summaries
- A unique study and practice tool
- Never study anything twice again
- Get the grades you hope for
- 100% sure, 100% understanding
Read the summary and the most important questions on Intelligente Systemen
-
College 1
This is a preview. There are 32 more flashcards available for chapter 03/02/2020
Show more cards here -
Wat zijn PEAS descriptions?
Om een goede rationale agent te maken moeten we weten wat het task environment is. Om dat te omschrijven gebruiken we PEAS:- Performance measure (Safe? Fast? Legal?)
- Environment (road, weather, traffic)
- Actuators (sturen, remmen, toeteren)
- Sensoren (camera, GPS)
-
De 4 basis soorten agenten:
- Simple reflex agent
- model-based reflex agent
- goal-based agent
- utility-based agent
- Simple reflex agent
-
Wat voor een model gebruiken de knowledge-based agents?
Model of environment -
College 2
This is a preview. There are 25 more flashcards available for chapter 06/02/2020
Show more cards here -
Stel dat K een conjunctie van alle formules van KB is. KB |= α desda (K → α) is...satisfiablevalidunsatisfiable
Nummer 2 klopt. -
KB |= α desda KB ∪ {¬α} is ..satisfiablevalidunsatisfiable
Nummer 3 klopt -
College 3
This is a preview. There are 19 more flashcards available for chapter 11/02/2020
Show more cards here -
Unit resolution + de regel
α ∨ β, ¬β
__________
α- Logisch equivalent aan de modus ponens
- Unit resolution rule: Laten c en c 2 tegenovergestelde literals (propositionele variabele) zijn. Dus bv. p is logisch equivalent aan ¬p.
-
Transform (p ↔ (q ∧ ¬r)) to a formula in CNV
(p ↔ (q ∧ ¬r))
≡ (p → (q ∧ ¬r)) ∧ ((q ∧ ¬r) → p) ↔ elimination
≡ (¬p ∨ (q ∧ ¬r)) ∧ (¬(q ∧ ¬r) ∨ p) → elimination
≡ ((¬p ∨ q) ∧ (¬p ∨ ¬r)) ∧ (¬(q ∧ ¬r) ∨ p) distributivity
≡ ((¬p ∨ q) ∧ (¬p ∨ ¬r)) ∧ ((¬q ∨ ¬¬r) ∨ p) De Morgan
≡ ((¬p ∨ q) ∧ (¬p ∨ ¬r)) ∧ ((¬q ∨ r) ∨ p) double ¬
After removing unnecessary brackets:
(¬p ∨ q) ∧ (¬p ∨ ¬r) ∧ (¬q ∨ r ∨ p) -
How to check if α follows from KB?
By showing thatKB ∪ {¬α} isunsatisfiable .
1. Convert the sentences fromKB and ¬α toCNF (+ decompose eachCNF formula into a set of clauses)
2. Apply resolution rule to resulting clauses.- Each pair that contains complementary
literals is resolved to produce a new clause. - Add to the set if it is not already present
- An application of the resolution rule derives the empty
disjunction , in which caseKB entails α - There are no new clauses that can be added, in which case
KB does not entail α
The emptydisjunction is a contradiction - Each pair that contains complementary
-
College 4
This is a preview. There are 23 more flashcards available for chapter 13/02/2020
Show more cards here -
Can we formalize this kind of reasoning in propositional logic?
All humans are mortal
Socrates is a human
______________________________
Conclusion: Socrates is mortal
An attempt:- p: All humans are mortal
- q: Socrates is a human
- r: Socrates is mortal
Antwoord: {p, q} |/= r -
Whereas propositional logic assumes world contains facts, first-order logic (like natural language) assumes the world contains:
- Objects: people, houses, numbers, theories, Ronald McDonald, colors, baseball games, wars, centuries . . .
- Relations: red, round, prime, multistoried . . ., brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, ...
- Functions: father of, best friend, one more than, plus . . .
- Higher grades + faster learning
- Never study anything twice
- 100% sure, 100% understanding