Samenvatting: Marketing Verdieping
- Deze + 400k samenvattingen
- Een unieke studie- en oefentool
- Nooit meer iets twee keer studeren
- Haal de cijfers waar je op hoopt
- 100% zeker alles onthouden
Lees hier de samenvatting en de meest belangrijke oefenvragen van Marketing verdieping
-
1 Statistische kengetallen
-
1.1 Het nut van de statistiek
Dit is een preview. Er zijn 3 andere flashcards beschikbaar voor hoofdstuk 1.1
Laat hier meer flashcards zien -
Als we vanuit marktonderzoek een beschrijving willen geven van een bepaalde doelgroep aan de hand van een onderzoek, maken we daarbij gebruik van de beschrijvende statistiek.
Beschrijvende statistiek is dat deel van de statistiek dat zich bezighoudt met de verwerking en weergave van feiten, zodanig dat een goed overzicht van de gegevens ontstaat. -
Van Doorn en Links vatten de doelstellingen van een statistisch onderzoek als volgt samen:
1. Het bepalen van detotale omvang van eenmassa
2. Het bepalen van de structuur/samenstelling van eenmassa
3. Het opstellen vanprognoses (voorspellingen )
4. Het bepalen van decorrelatie tussen 2 of meer verschijnselen
5. Het maken vanalgemeen-economische enbedrijfseconomische vergelijkingen .
Samengevat: het doel van statistiek is het verschaffen van overzicht en inzicht in massaverschijnselen, ongeacht op welk gebied -
1.2 De statistische basisbegrippen
Dit is een preview. Er zijn 3 andere flashcards beschikbaar voor hoofdstuk 1.2
Laat hier meer flashcards zien -
Voor het uitvoeren van een goed onderzoek is het van belang dat de onderzochte groep duidelijk wordt afgebakend. De verzameling van elementen waarop een onderzoek betrekking heeft, noemt men
Een populatie of universum. -
Wat moet er gebeuren met kenmerken voordat het bruikbaar is voor onderzoek?
Het moet operationeel worden gemaakt. Het moet worden omgezet in een variabele. Daarbij dient beschreven te worden welke waarden die variabele kan aannemen. Tevens moeten we vastleggen hoe we op eenduidige wijze aan elk element van de populatie een waarde van de variabele kunnen toekennen.
Deze toekenning wordt meten genoemd en de door waarneming vastgestelde waarde heet meetwaarde of waarnemingsuitkomst -
1.3 De frequentieverdeling
Dit is een preview. Er zijn 3 andere flashcards beschikbaar voor hoofdstuk 1.3
Laat hier meer flashcards zien -
Bij het indelen in klassen zal men ook de klassenbreedte (klasseninterval) moeten bepalen:
Onder klassenbreedte verstaat men het verschil tussen de laagste waarde die in de klasse zou kunnen voorkomen en de laagste waarde die in de daarop volgende klasse zou kunnen voorkomen. -
Het zal in veel gevallen noodzakelijk zijn klassen van ongelijke breedte te gebruiken, om daarmee het aantal klassen met een zeer lage frequentie te beperken. Het gevolg hiervan is wel dat de frequenties in de tabel niet direct met elkaar te vergelijken zijn. We kunnen dit oplossen door:
Niet te kijken naar absolute frequenties, maar naar de frequentiedichtheid. Dit is de frequentie per eenheid klassenbreedte. -
1.4 De grafische voorstelling
Dit is een preview. Er zijn 1 andere flashcards beschikbaar voor hoofdstuk 1.4
Laat hier meer flashcards zien -
Een bijzondere vorm van de gecumuleerde relatieve frequentieverdeling is de Lorenzcurve/concentratiecurve
Hierbij plaatst men aan beide zijden van het diagram gecumuleerde relatieve frequenties. Deze curve komen we in de marketing vaak tegen als het gaat om het bepalen in hoeverre bepaalde producten van het assortiment een bijdrage leveren aan de omzet -
Een veel toegepaste regel is de 20/80-regel
Dit is een ervaringsregel waaruit blijkt dat 80% van de omzet gerealiseerd wordt door 20% van de producten.
Voor een onderneming is het dan ook van belang dat men deze verdeling goed kent en daarmee rekening houdt bij het bepalen van de voorraad. -
1.5 De locatiemaatstaven
Dit is een preview. Er zijn 4 andere flashcards beschikbaar voor hoofdstuk 1.5
Laat hier meer flashcards zien -
Ongewogen rekenkundig gemiddelde vs gewogen rekenkundig gemiddelde
Door middel van hetongewogen rekenkundige gemiddelde geven we de gemiddelde waarde van eenreeks aan. Hetrekenkundig gemiddelde is desom van eenrij getallen , gedeeld door het aantalgetallen .
Bij het gewogen rekenkundig gemiddelde wordt rekening gehouden met het aantal verkochte eenheden per product of prijsklasse. -
2 De steekproeftheorie
-
2.1 Het principe van de aselecte steekproef
Dit is een preview. Er zijn 2 andere flashcards beschikbaar voor hoofdstuk 2.1
Laat hier meer flashcards zien -
Om uitspraak te kunnen doen over een populatie wordt een minimum aantal respondenten aangehouden. Dit zijn
25 personen die daadwerkelijk antwoorden hebben gegeven
- Hogere cijfers + sneller leren
- Niets twee keer studeren
- 100% zeker alles onthouden
Onderwerpen gerelateerd aan Samenvatting: Marketing Verdieping
-
Statistische kengetallen
-
De steekproeftheorie - De methode van steekproeftrekking
-
Het toegepast marktonderzoek - Het productonderzoek
-
Productattributen - De verpakking
-
Productlevenscyclus en productontwikkeling - De productlevenscyclus
-
Detailhandelsmarketing - De trends in het consumentengedrag
-
Detailhandelsmarketing - De detailhandelskenmerken
-
Mediumtypen en mediumtype keuze - De audiovisuele media
-
De persoonlijke verkoop en direct marketing
-
Online marketing attractie - Websites
-
Online marketing attractie - Zoekmachine marketing
-
Online marketing attractie - Online adverteren
-
Online marketing transactie - E-mailmarketing
-
De internationale markt - De cultuur: begripsafbakening en kenmerken
-
De financiële en portofolioanalyse - Balans
-
SWOT-analyse - Het strategisch planningsproces
-
Strategische opties - De strategische alternatieven
-
Kennistrainers